ddnn.Rd
This function interfaces keras infrastructures for high-level neural networks. The function
can be used as a standalone model fitting engine such as bamlss
or as an on top
model engine to capture special features in the data that could not be captures by other
model fitting engines.
## Deep distributional neural net.
ddnn(object, optimizer = "adam",
learning_rate = 0.01,
epochs = 100, batch_size = NULL,
nlayers = 2, units = 100, activation = "relu",
l1 = NULL, l2 = NULL,
validation_split = 0.2, early_stopping = TRUE, patience = 50,
verbose = TRUE, ...)
## Predict method.
# S3 method for ddnn
predict(object, newdata,
model = NULL, type = c("link", "parameter"),
drop = TRUE, ...)
## CV method for optimizing
## the number of epochs using
## the CRPS.
cv_ddnn(formula, data, folds = 10,
min_epochs = 300, max_epochs = 400,
interval = c(-Inf, Inf), ...)
An object of class "bamlss"
or a bamlss.formula
.
Character or call to optimizer functions to be used within fit
.
For character, options are: "adam"
"sgd"
, "rmsprop"
, "adagrad"
,
"adadelta"
, "adamax"
, "adam"
. The default is
optimizer_rmsprop
with learning rate set to 1e-04
.
The learning rate of the optimizer.
Number of times to iterate over the training data arrays, see
fit
.
Number of samples per gradient update, see fit
.
Number of hidden layers.
Number of nodes per hidden layer, can be a vector.
Activation functions used for the hidden layers, can be a vector.
Shrinkage parameter for L1 penalty.
Shrinkage parameter for L2 penalty.
Proportion of data that should be used for validation.
Logical, should early stopping of the optimizer be applied?
Integer, number of iterations the optimizer waits until early stopping is applied after changes get small in validation data set.
Print information during runtime of the algorithm.
A list
or data.frame
that should
be used for prediction.
Character or integer specifying for which distributional parameter predictions should be computed.
If type = "link"
the predictor of the corresponding model
is returned. If type = "parameter"
predictions on the distributional parameter scale
are returned.
If predictions for only one model
are returned, the list structure is dropped.
The model formula.
The data used for estimation.
The number of folds that should be generated.
Defines the minimum and maximum epochs thet should be used.
Response interval, see function CRPS
.
Arguments passed to bamlss.frame
.
The default keras model is a sequential model with two hidden layers with "relu"
activation function and 100 units in each layer. Between each layer is a dropout layer with
0.1 dropout rate.
For function ddnn()
an object of class "ddnn"
. Note that extractor
functions fitted
and residuals.bamlss
can be applied.
For function predict.ddnn()
a list or vector of predicted values.
The deep learning infrastructure is experimental!
if (FALSE) ## Simulate data.
set.seed(123)
n <- 300
x <- runif(n, -3, 3)
fsigma <- -2 + cos(x)
y <- sin(x) + rnorm(n, sd = exp(fsigma))
## Setup model formula.
f <- list(
y ~ x,
sigma ~ x
)
## Fit neural network.
library("keras")
#>
#> Attaching package: ‘keras’
#> The following object is masked from ‘package:rjags’:
#>
#> adapt
b <- ddnn(f, epochs = 2000)
#> Error in eval(predvars, data, env): object 'y' not found
## Plot estimated functions.
par(mfrow = c(1, 2))
plot(x, y)
plot2d(fitted(b)$mu ~ x, add = TRUE)
#> Error in eval(predvars, data, env): object 'b' not found
plot2d(fitted(b)$sigma ~ x,
ylim = range(c(fitted(b)$sigma, fsigma)))
#> Error in eval(predvars, data, env): object 'b' not found
plot2d(fsigma ~ x, add = TRUE, col.lines = "red")
## Predict with newdata.
nd <- data.frame(x = seq(-6, 6, length = 100))
nd$p <- predict(b, newdata = nd, type = "link")
#> Error in eval(expr, envir, enclos): object 'b' not found
par(mfrow = c(1, 2))
plot(x, y, xlim = c(-6, 6), ylim = range(c(nd$p$mu, y)))
plot2d(p$mu ~ x, data = nd, add = TRUE)
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.matrix': object 'p' not found
plot2d(p$sigma ~ x, data = nd,
ylim = range(c(nd$p$sigma, fsigma)))
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.matrix': object 'p' not found
plot2d(fsigma ~ x, add = TRUE, col.lines = "red")
## Plot quantile residuals.
e <- residuals(b)
#> Error in eval(expr, envir, enclos): object 'b' not found
plot(e)
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'e' not found