bamlss.frame.RdThis function parses the data and the model formula, or
extended bamlss.formula, as well as the bamlss.family
into a bamlss.frame object. The bamlss.frame then holds all model
matrices and information that is needed for setting up estimation engines.
bamlss.frame(formula, data = NULL, family = "gaussian",
weights = NULL, subset = NULL, offset = NULL,
na.action = na.omit, contrasts = NULL,
knots = NULL, specials = NULL, reference = NULL,
model.matrix = TRUE, smooth.construct = TRUE,
ytype = c("matrix", "vector", "integer"),
scale.x = FALSE, scale.d = FALSE, ...)A formula or extended formula, i.e., the formula can be a
list of formulas where each list entry specifies the details of one parameter
of the modeled response distribution, see bamlss.formula. For incorporating
smooth terms, all model term constructors implemented in mgcv such as
s, te and ti can be used, amongst others.
A data.frame or list containing the model
response variable(s) and covariates specified in the formula.
By default the variables are taken from environment(formula):
typically the environment from which bamlss is called.
A bamlss.family object, specifying the details of the modeled
distribution such as the parameter names, the density function, link functions, etc.
Prior weights on the data.
An optional vector specifying a subset of observations to be used in the fitting process.
Can be used to supply model offsets for use in fitting.
A function which indicates what should happen when the data
contain NA's. The default is set by the na.action
setting of options, and is na.omit if set to NULL.
An optional list. See the contrasts.arg of
model.matrix.default.
An optional list containing user specified knots, see the documentation of
function gam.
Specify new special terms here to be used with the bamlss.formula,
see also terms.object.
A character specifying a reference category, e.g., when
fitting a multinomial model.
Logical, should model matrices for linear parts be returned?
Logical, should model matrices, e.g., as returned from
smooth.construct and smoothCon be part
of returned bamlss.frame?.
For categorical responses, should the response be a vector or matrix. If
ytype == "matrix" bamlss.frame() uses function model.matrix
to construct the response matrix from levels. If the response is a factor
ytype == "integer" will create an integer response.
Logical, should the model matrices of the linear parts be scaled?
Logical, should the numeric variables in the model frame be scaled?
Arguments passed to function smooth.construct.bamlss.frame.
The function parses the data, the formula or the extended
bamlss.formula as well as the bamlss.family into a model frame
like object, the bamlss.frame. This object holds all necessary model matrices
and information that is needed for model fitting engines. Per default,
all package mgcv smooth term constructor functions like
s, te, t2 and
ti can be used (see also function smooth.construct),
however, even special user defined constructors can be included, see the examples below.
Function bamlss.frame() uses function model.matrix.bamlss.frame to
compute all design matrices for simple linear parts, all smooth terms are parsed with
function smooth.construct.bamlss.frame.
It is also possible to create a "bamlss.frame" using hierarchical formulae, see the
example below.
An list of class "bamlss.frame" with the following elements:
The initial call.
The model.frame used to compute all design matrices.
The bamlss.formula.
The bamlss.family object.
The terms.bamlss object.
A named list, the elements correspond to the parameters that are specified
within the bamlss.family object. For each parameter the corresponding
formula, a fake.formula only holding the covariate names, a terms
object, a model.matrix for the linear part and a list smooth.construct
holding all information for smooth terms as returned from function
link{smooth.construct.bamlss.frame} is created.
The response data.
## Create a 'bamlss.frame'.
d <- GAMart()
f <- list(
num ~ fac + s(x1) + s(x2) + te(lon, lat),
sigma ~ id + s(x2) + s(x3)
)
bf <- bamlss.frame(f, data = d, family = "gaussian")
## Show parts of the 'bamlss.frame'.
print(bf)
#> 'bamlss.frame' structure:
#> ..$ call
#> ..$ model.frame
#> ..$ formula
#> ..$ family
#> ..$ terms
#> ..$ x
#> .. ..$ mu
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> .. ..$ sigma
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> ..$ y
#> .. ..$ num
#> ..$ delete
## Categorical responses.
f <- list(
cat ~ fac + s(x1) + s(x2)
)
bf <- bamlss.frame(f, data = d, family = "multinomial", reference = "low")
print(bf)
#> 'bamlss.frame' structure:
#> ..$ call
#> ..$ model.frame
#> ..$ formula
#> ..$ family
#> ..$ terms
#> ..$ x
#> .. ..$ none
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> .. ..$ medium
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> .. ..$ high
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> ..$ y
#> .. ..$ cat
#> ..$ delete
## The response is a matrix per default.
head(bf$y)
#> cat.none cat.medium cat.high cat.low
#> 1 1 0 0 0
#> 2 0 0 0 1
#> 3 0 1 0 0
#> 4 0 0 0 1
#> 5 0 0 0 1
#> 6 0 0 0 1
## 0/1 responses.
d <- cbind(d, model.matrix(~ -1 + cat, data = d))
f <- list(
catnone ~ fac + s(x1),
catlow ~ s(x2),
catmedium ~ s(x3)
)
bf <- bamlss.frame(f, data = d, family = "multinomial")
print(bf)
#> 'bamlss.frame' structure:
#> ..$ call
#> ..$ model.frame
#> ..$ formula
#> ..$ family
#> ..$ terms
#> ..$ x
#> .. ..$ catnone
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> .. ..$ catlow
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> .. ..$ catmedium
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> ..$ y
#> .. ..$ catnone
#> .. ..$ catlow
#> .. ..$ catmedium
#> ..$ delete
## Hierarchical structures.
f <- list(
num ~ s(x1) + s(x2) + id,
id ~ te(lon, lat),
sigma ~ s(x1) + fac
)
bf <- bamlss.frame(f, data = d, family = "gaussian")
print(bf)
#> 'bamlss.frame' structure:
#> ..$ call
#> ..$ model.frame
#> ..$ formula
#> ..$ family
#> ..$ terms
#> ..$ x
#> .. ..$ mu
#> .. .. ..$ h1
#> .. .. .. ..$ formula
#> .. .. .. ..$ fake.formula
#> .. .. .. ..$ terms
#> .. .. .. ..$ model.matrix
#> .. .. .. ..$ smooth.construct
#> .. .. ..$ h2
#> .. .. .. ..$ formula
#> .. .. .. ..$ fake.formula
#> .. .. .. ..$ terms
#> .. .. .. ..$ match.index
#> .. .. .. ..$ nodups
#> .. .. .. ..$ model.matrix
#> .. .. .. ..$ smooth.construct
#> .. ..$ sigma
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> ..$ y
#> .. ..$ num
#> ..$ delete
## Special model term constructors,
## set up "new" constructor function and eval
## with bamlss.frame().
s77 <- function(...) {
sm <- s(...)
sm$label <- paste("s77(", paste(sm$term, collapse = ","), ")", sep = "")
sm
}
f <- list(
num ~ s77(x1) + s(x2) + id,
sigma ~ s77(x1)
)
bf <- bamlss.frame(f, data = d, family = "gaussian", specials = "s77")
#> Error in s77(x1): could not find function "s77"
print(bf)
#> 'bamlss.frame' structure:
#> ..$ call
#> ..$ model.frame
#> ..$ formula
#> ..$ family
#> ..$ terms
#> ..$ x
#> .. ..$ mu
#> .. .. ..$ h1
#> .. .. .. ..$ formula
#> .. .. .. ..$ fake.formula
#> .. .. .. ..$ terms
#> .. .. .. ..$ model.matrix
#> .. .. .. ..$ smooth.construct
#> .. .. ..$ h2
#> .. .. .. ..$ formula
#> .. .. .. ..$ fake.formula
#> .. .. .. ..$ terms
#> .. .. .. ..$ match.index
#> .. .. .. ..$ nodups
#> .. .. .. ..$ model.matrix
#> .. .. .. ..$ smooth.construct
#> .. ..$ sigma
#> .. .. ..$ formula
#> .. .. ..$ fake.formula
#> .. .. ..$ terms
#> .. .. ..$ model.matrix
#> .. .. ..$ smooth.construct
#> ..$ y
#> .. ..$ num
#> ..$ delete
names(bf$x$mu$smooth.construct)
#> NULL